处理中...

首页 > 资料大全 > 技术资料 >

风筝发电系统的技术进展与现实困境

风筝发电系统的技术进展与现实困境
来源:我爱方案网 时间:2013-06-24

 

【导读】与传统风电设备相比,尚处于实验室阶段的风筝发电系统还有很多难题要克服,但技术上已取得了很大进展,去年,Makani推出了额定功率30千瓦的风筝发电系统原型。据了解,它的终目标是在海上部署成型的风筝发电系统,并将生产的电能接入电网。

 

眼下,各国科研人员正在努力赋予风筝一项新的功能——让它成为高空风力发电平台。在可预见的未来,“风电风筝”将会飞入高空,将那里更强劲、更稳定的风能“捕获”回来。

三种用风筝发电的方法

根据记载,虽然早在十九世纪初就有人用大型风筝来拉小火车,但直到1980年左右,才有人着手研究风筝发电的可能性。

开创这一领域理论研究的研究人员叫万里-劳埃德,他在加利福尼亚州的劳伦斯·利弗莫尔国家实验室里计算出,相比于悬在空中某一点,风筝在风中来回飞动能产生更大的能量,如果翼展能达到洛克希德C-5运输机机翼大小(68米长),理论上从每秒10米的风力中就能获得兆瓦级的能量,这已能与当今大型地面风力发电机相提并论。

劳埃德提出两种风筝发电的方式:一是在风筝机翼上安装类似螺旋桨的涡轮机叶片,空气带动叶片旋转产生电能,然后通过导电的绳索将电能传送到地面,这种技术如今被昵称作“飞翔的发电机”;另一种方案是通过空中的风筝施加给控制绳索的力,带动地面设备发电。

此外,后来还有人提出,涡轮叶片既作为能量收集装置,同时也是风筝的动力装置。

与高塔、风车式样的传统风力发电机相比,这种“筝载”高空风力发电系统自有其优势:这种带绳索的飞行器能到达更高的空中,那里的风能更加强劲稳定。此外,因为不用建高塔支撑巨大的旋转叶片,这就大幅度削减了建设成本和安装时间。

当然,与传统风电设备相比,尚处于实验室阶段的风筝发电系统还有很多难题要克服。譬如,在这种系统中,风筝作为风能采集器将高空风能转化为机械能,同时也是保持系统稳定的平衡器,但平衡运动与做功运动相互耦合、相互影响,很难设计出平衡与做功的控制模式,系统复杂,持续性和稳定性难以保障。另外还要考虑安全问题,碰到雷雨天气,电站容易被“顺绳索而下”的雷电击毁。

刚性翅膀Vs纤维翅膀

作为全球开发精密风筝发电原型的“先驱者”之一,罗伯特-克莱顿创办的Wind Lift公司从2005年开始开发风筝发电系统,目前他们正在陆地上使用冲浪风筝进行发电试验。

实验用的发电系统包括一个90厘米直径的滚筒和一个60千瓦发电机连接,风筝通过绳索拉动滚筒带动发电机发电,然后通过控制线使风筝释放拉力,在这个过程中反过来用电机反转滚筒并再次拉紧风筝。

现在实验面临的问题是,在再次拉紧过程中,风筝需释放所有拉力或者好让拉力为负,即让空气把风筝向下推,但风筝只有完全收起翼展才能释放绳索大部分拉力,科研人员因此使用了一种翅膀前面有一条细长空气泡的充气风筝,用来保持翅膀形状。即便如此,翅膀还是过于灵活,再次拉紧时难以控制。

WindLift的风筝用的是更接近传统风筝的纤维翅膀,而它的部分竞争对手则根据第三种风筝发电的思路,研究使用刚性翅膀,这种设计思路更贵、着陆时更易损坏,但刚性翅膀比纤维翅膀更符合空气动力学,能从风中获得更多能量。

位于加利福尼亚州的Makani Power公司就是这种思路的“龙头企业”之一。他们制造的大型碳复合材料风筝,配备4台带螺旋桨的发电机。起飞时,发电机作为电动机带动螺旋桨转动,作为风筝上天的动力;起飞后,产生的升力很快能让风筝不需要其他助力飞行,一旦风带来的推力和螺旋桨拉力平衡,发电机就开始发电。

去年,Makani推出了额定功率30千瓦的风筝发电系统原型。据了解,它的终目标是在海上部署成型的风筝发电系统,并将生产的电能接入电网。